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Abstract. The matrices of the symmetrical transformations for all the three-dimensional
Bravais lattices are found. These matrices may be applied for the investigation of physical
properties of single defects in crystals in the supercell model. The corresponding transformations
of reciprocal lattices with a not more than 32-fold decrease of the Brillouin zone volume are
used for the generation of special point sets for the approximative numerical integration over
the Brillouin zone in cubic crystals with simple, face-centred and body-centred lattices.

1. Introduction

The supercell approach is widely used for the calculation of the energy levels of a crystal
with a point defect in order to estimate the position of the local defect energy levels with
respect to the energy band edges of the perfect crystal (a model of a crystal with a periodic
defect or a supercell model of an imperfect crystal [1-6]). In this model the supercells
obtained due to a symmetrical linear transformation of the basic vectors of a host lattice are
favourable as this assures the largest possible distance between neighbouring defects for the
fixed supercell volume [7].

Special points of the Brillouin zone are used in crystal calculations involving the
averaging over the Brillouin zone of periodic functions of the wavevector. Many procedures
for special point generation have been proposed [8-14]. The supercell method appears
to be the most general and fruitful in practical applications [13,14]. The symmetrical
transformation of the basic vectors of the direct (and reciprocal) lattice is also favourable
in the supercell method of special point generation as it gives as a rule the most efficient
sets of special points.

In this paper both these aspects of application of the supercell method are considered.
In section 2 the matrices of symmetrical transformation are generated for all the 14 three-
dimensional Bravais lattices. In section 3 the main features of the procedure of special
point generation by the supercell method are exposed. In section 4 are given the sets
of special points for cubic crystals with simple (P), face-centred (F) and body-centred (I)
lattices generated by the symmetrical increase of the unit cell volume up to 32-fold.
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2. The supercell method in the theory of imperfect crystals

The symmetry of the supercell model of a crystal with a point defect is studied in [7]. The
general consideration is illustrated in detail by the examples of point defects of atomic and
molecular types in the MgO crystal. The main point of the supercell model is the transition
from the initial Bravais lattice to a ‘rare’ one consisting of supercells with the help of integer
linear transformation of basic translation vectors of the initial lattice. This transformation
is called symmetric if it does not change the symmetry of the lattice. The symmetric
transformation is compatible with the change of lattice type in the limits of the same crystal
system. As is pointed out in [7] the symmetrical transformation of basic translation vectors
is the most efficient for the application of the supercell model when investigating physical
properties of a single defect in a crystal.

Let a;(T'1) (i = 1, 2, 3) be the basic translation vectors of the initial direct lattice of
typeI'; and A;(T'2) (j = 1, 2, 3) be the basic translation vectors of a new lattice of type
', with the same point symmetry but composed of supercells. Then

A;(T9) = L;i(Tolai(ly) | detl| =L @

wherel;; (T'»I";) are integer elements of the matéid’»I";) defining the transition from the
lattice of typeI’; to the lattice of typd™,.

The vectorsA;(I'») have well defined orientation with respect to point symmetry
elements of the lattices which are the same for both lattices because of the symmetrical
character of the transformation (1). Let us define the components of the vettdrs) by
the parameters, assuring their correct orientation relative to the lattice symmetry elements
and the correct relations between their lengths (if there are any). Then three vector relations
(1) give nine linear nonhomogeneous equations to determine nine matrix eldm@nis,;)
as functions of the parametess. The requirements that these matrix elements must be
integers define the possible values of the parametegsving the solution of the problem.

Let us demonstrate the procedure of finding the matrix of a symmetrical transformation
(1) on the example of the rhombohedral crystal system where there is only one lattice type
(R). The basic translation vectors of the initial lattice are the following:

a; = (a,0,¢) azs = (—a/Z, :l:a«@/Z, c) .

The basic translation vectors of the new lattice composed of supercells for symmetrical
transformation (1) have the same form (the parameieand ¢ of the initial lattice are
replaced with the parametersa, soc)

A1 = (514, 0, s2¢) Az = (—sla/Z, :I:sla«/g/Z, szc) .

Inserting them in (1) one obtains nine equations for nine elements of the matfike
solution of this system is

/ s2 + 251
g — 3

As the matrix elements; must be integers let us assign —s1)/3 = np and(s2+2s1)/3 =

n1 + np. The matrix of the symmetrical transformation for a rhombohedral lattice with the

corresponding value df may be found in appendix A where the matrices of the symmetrical

transformations for all three-dimensional crystal lattices are given. Let us explain the

peculiarities of the consideration made for each of seven possible crystal systems.

So — S
8, + 23 L(1—5;).
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In the triclinic crystal system an arbitrary matrix with integer elements defines a
symmetrical transformation (any transformation seems to be symmetrical because of the
low point symmetry of the lattice).

In the monoclinic crystal system there are two lattices, simple (P) and base-centred
(A) each of which is defined by five parameters. Therefore the matrices of symmetrical
transformations are determined by five integers.

In the hexagonal crystal system there is only one lattice type (P), but the basic translation
vectors may be oriented in two different ways relative to the basic translation vectors of
the initial lattice: either parallel to them or rotated through an angle /& about theZ-
axis. Therefore two types of symmetrical transformation are possible in this case (with two
parameters for each).

In the orthorhombic crystal system the base-centred lattice merits special attention
because of different possible settings. Let the initial base-centred lattice have the setting C.
The transition to base-centred lattices with settings C and A (or B) gives different results
(see appendix A). The change of setting for the transition to other types of lattice does not
give new supercells.

In tetragonal crystal systems there are two types of Bravais lattice (P and I). All their
symmetrical transformations may be obtained from the symmetrical transformations for
orthorhombic lattices if one sets = n, and takes into account that base-centred and face-
centred orthorhombic lattices become simple and body-centred tetragonal ones respectively.

The matrices of symmetrical transformations for all the types (P, F, 1) of cubic lattices
may be also obtained from the matrices of symmetrical transformations for orthorhombic
lattices if one set&, = ny, = n3 = n.

3. The supercell method of special point set generation

Let B;(I'1) =12 3) and bj(fz) (j = 1, 2, 3) be basic translation vectors of the
reciprocal lattices corresponding to direct ones determined by basic translation vectors
a;(I'y) and A (T",) respectively. The transformation (1) of the direct lattices is accompanied
by the following transformation of reciprocal lattices:

bj(Fg) = Y (7' (2l'))i; Bi(T'y). @)

For the symmetrical transformation (1) the transformation (2) is also symmetrical as it does
not change the point symmetry of the reciprocal lattice. The symmetrical transformation is
compatible with the change of the reciprocal lattice type in the limits of the same crystal
system too.

The vectorsb; defining the small Brillouin zone are very important in the theory of
special points [13, 14]. Lef (K) be the function with a point symmety to be integrated
over the initial Brillouin zone where the wavevectr varies. Usually the point symmetry
group G either coincides with the crystal claésof the crystal (ifG contains the inversion
I) or G = G x C; (otherwise) [14]. The functiorf (K) may be expanded in Fourier series
over symmetrized plane waves, (K)

f(K) - Z f;an(K) (3)

Py (K) = Z quiK ‘ ga’m) (4)

1
ne geG
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where a,, = Zf’:lmiai is some translation vector of the direct lattice, the integer
m = 0, 1, 2,... numerates the stars of vectasa,,(geG) in order of increasing length.
The functionsP,,(K) have the properties [9]

= [ P(K)dK =68,0 m=0,12, ... )
Vez JBZ

Let m be a subset ofn corresponding to the stars of vectaysl,,(geG). As it is
proved in [13] and [14], for symmetrical transformation (L)points in the initial Brillouin
zone (related to the initial basic translation vectary

Kl(k) :k—}-Zq,jbj (6)
J

whereg,; are integers and is an arbitrary vector in the small Brillouin zone (related to
the basic translation vectord;), satisfy the relation

L
Z Pm(Kz(k)) =L Z Prh(k)(smnﬁ (7)
=1 m
or
N
Y w Py (K®) =" Pa(k)Smn. ®)
s=1 m

In the latter relatiors numbers the different irreducible wavevectr stars which contain
the points (6) andv; = L,/L (L, is the number of points (6) belonging to thth star,
Zf’:l Ly = L). The pointsK® are usually chosen in the irreducible part of the Brillouin
zone.

Relations (3), (5) and (8) give the following formula of the approximative numerical
integration:

N

~ (k)
v, |, SEOAK ; ws f (K. ©)
Let M = s be the number denoting the set of vectgr4,,, with the smallest (nonzero)
lengths. If f(K) is some linear combination a?,, (K) with m < M, then the formula (9)
appears to be exact. The numbércharacterizes the accuracy of the numerical integration
formula. The special choice @f can either increase the accurady or change the number
N of points K® (or both) [13, 14].

To generate the set of poinfs® for any of 14 Bravais lattices it is sufficient to find
the inverse of the corresponding matrix from appendix A, to pick out according ta (6)
points in the Brillouin zone related to basic translation vectrsand to distribute them
over stars. The distribution of these points over stars depends on the symmetry@roup
of the function f (K) and cannot be made in general form. In the next section the special
point sets are generated for cubic lattices.

4. Special point sets for cubic crystals

The sets of special points for numerical integration over the Brillouin zone of cubic crystals
are given in tables 1-3. They are obtained by symmetrically increasing the unit cells of
cubic lattices forl. < 32. The tables contain the sets (6) wkh= 0 and some efficient sets
with k # 0. Some sets were found earlier in [8-14]. The types of lattice (TL) composed of
supercells are indicated in the second columns. The symbols of the mafriees™ (2)
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Table 1. Special points of the Brillouin zone for the simple cubic lattice generated by
the symmetrical transformation:B; = (27/a)(1,0,0), B> = (2r/a)(0,1,0), Bz =
(21/a)(0,0,1); Ky = a1B1 + 2Bz + a3B3 = (a1, a2, @3).

L TL D M Special pointsK, {weightsw,}
2 F 30, 2 (0.0,0) {3} (3. 3. %) {3}
41 303 3 (0.0,0) {3} (3.3.0) {3}
4 (:0.0 {31 [3.0.D{H G 10GNG. 3. DiF
8 P 301 4 (0.0,0) {3} (3.0.0) {3} (3.3.0) {3} 3. 3. 3) {§}
1519 .39 E GG Gl HE
6 F ;02 7 0.0.0) {5} (G. 3.3 3} (5.0.0 {} (5.3.0 {) AL 1D ()
27 P 301 9 (0.0,0) {5} (3.0.0) {3} (3.3.0) {g} (3. 3.3 {2}
32 1 303 12 000z} (3.0 G.00{H G 1D G 30R G 32 ()

Table 2. Special points of the Brillouin zone for the face-centred cubic lattice generated
by the symmetrical transformationB; = (27/a)(-1,1,1), B, = (2n/a)(1,-1,1), B3 =
2r/a)(1,1, -1); Ky = a1B1 + a2 B2 + 03Bz = (a1, a2, a3).

L TL D um Special pointsK, {weightsw,}
4P 303 2 (0.0,0) {3} 0. 3.3 {3}
2 G- 33 (1
2 G. 3.9 {1
8 F 301 4 0,0,0) {3} (5.3.3) {3} 0.3.3) (3}
4 05 DHGIEBG DG
8(10) (3.3.9 3} 3. 3. D ()
16 1 304 6(7) (0.0.0) {55} (G.3.2) (3) 033 ()
6(7) 0.3H3G3H6G1HE
27 F 301 10 0,00 {5} 3.3 H{£ 03 DG 3.2
32 P 3035 8 (000 (35 0.5 (G 10EG 5 DE 0593 G 5D

of transformation of basic vectors of reciprocal lattices are given in the third column. The
matricesQ; themselves are given in appendix B.

The system of symmetrized plane wavgs K) depends on the crystal class. Therefore
the numben which characterizes the efficiency of the set of special points may be different
for different crystal classes [14]. In tables 1-3 the numlbdérare given for crystal classes
Tg, O, O, and T, T, (in parentheses). Besides, in table 1 for= 4 two special points
(1/2,0,1/4) and(1/2, 1/4, 0) are related to different stars in crystal classes Jafd each
of them is a special point with the weight 1/4; in crystal classgsO, O, they are related
to the same star and this three-special-point set contains only one of these points with the
weight 1/2.

Appendix A. Matrices of the symmetrical transformations of three-dimensional
Bravais lattices

A.1. The triclinic crystal system

i) 1(P,P) is an arbitrary integer matrix.
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Table 3. Special points of the Brillouin zone for the body-centred cubic lattice generated
by the symmetrical transformationB; = (27/a)(0,1,1), By = (2n/a)(1,0,1), B3 =
(2r/a)(1,1,0); Ky = a1B1 + 2Bz + a3 B3 = (a1, a2, @3).

L TL YD M Special pointsK, {weightsw,}
2 P 30 2 ©000{}G D
2 (Go3
2 0,0, 3) {1}
2 G320
3 (3. 1) i
4 F 705 3 0.0.0 {7} (3.7.2 {3} G. 3.2 {3}
3 (.32 {31005 {3)
6 G GE )
8 I 301 5 (0,0,0) {3} (0.0.5) {3} 5. 3. %) (3)
5 G3dEGdE
6 0.0.7) {3} 0. 3. D {3} G.3. 2 (3} i
16 P 702 6 0.0,0 {{} (7. 7.2 (3) 0.0 G. 7.2 {5} G. 3.2 {4s)
6 G E GGG G @
27 1 301 10(11) (0.0.0) (£} (0.0.3) {3} (5. 3.3 {5} 0. 3. ) {5}
32 F 305 12 0,00 () (G g (3 G 3B OODIH G3.DGEGLD
{36) G. 3.2 ()
A.2. The monoclinic crystal system
ni ns 0
) l(P,P):(n4 no 0) L = (ninp — nans)ns (A1)
0 0 ns
ni ns 0

(i) I(A,P) = <n4 no —n3> L = 2(nyny — nans)na
ng N2 ns

na na ng
(III) I(P, A) = (l’l5 ny n2> L= 2(}111’12 — n4n5)n3
0 —n3 ns
ni ns ns
(iv) I(A,A) = <n4 np+n3 np— ng) L = 4(nyny — nans)na.
n4g nz—nz nz+ns

A.3. The hexagonal crystal system

ni 0 0
i) IDP,P) = ( 0 ny O ) L =nn, (A2)
0 0 np
ny —nj 0
(i) PP, P) = (nl 2n; O ) L= 3n§n2.
0 0 np
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A.4. The rhombohedral crystal system

3029

ni+no no ny
() I(R,R) = ( na 2ny +ny no L = n%(nl + 3ny).
na na ni+ny

A.5. The orthorhombic crystal system

(i) I(P, P) coincides with (A

1)

ng —np, 0O
(II) l(C, P) ( np O ) L = 2111)’12}’13
0 ns
np ns
(i) I(F,P) = ( 0 n3> L = 2ninons
np 0
ns
(iv) I(,P) = ( ns3 ) L = 4nqnoni
—ns3
V) I(P, C) (—nz ny ) L = 2ninons
0
1
(vi) I(C,C) = <n2 ni 0O ) L = (n} —n3)ns
0 0 n3
ni ni 0
(vii) I(A,C) = ( —no Ny —ng) L = 4ninong
—nz nz n3
—hn3 —n3 ns
(VIII) Z(F, C) < ni ny ng) L = 4ninons
ng—ny ni+ny 0
—np —n2 n3
(ix) 1(1,C) = ( n na  ng ) L =2(n% —ndn3
nz niy —ns3
—niy ni ni
X I(P,F) = < ny —nz N2 ) L = 4ninyng
n3 n3 —n3
—ni1 ni nys
xi) I(C,F) = (—nz np, Ny ) L= 2(n% — n%)ng
ns ni3 —ns
1(n2+n3 —nz+ng nz-"s)
(XII) I(F,F) = - | —n14+n3 ni4+ns ny—n3 L = ninons;
2
—ni+nz ni—nz ni+n
ni, ny, n3 are of the same parity.
ny+ny+n3 —n3 —na
xii) (1, F) = ( —n3 ni+ny+ns —n1 )
—no —n1 ni1+ny+n3

L = 2[(n1 + n2 + n3)(niny + nonz + nani) — ningns)
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xiv) I(P, 1) = ( ) L = 2ninyn3
ng —n2
xv) I(C, ) < ny ni—+ n2> L = 4ninonsg
no +n3 ns no
xvi) I(F, ) = ni ~|— ns ni L = 4ninyns
ni+n2

n2+n3 —n1+n3 —n1+ns
(xvi) (I, 1) = é —ny+ns ni+ns3 ny—no L = ninong;

np —nj3 ni —ns niy+no

ni, nz, nz are of the same parity.

A.6. The tetragonal crystal system

(i) IV(P, P) coincides with (A.2)

ny —ni 0
(i) PP, P) = ( n 0 ) L = 2n%n,
0 np

ny np
(i) 1Y, P) = 0 n2> L = 2n3n,

ni 0
nz
ns L= 41’1%1/12

—nz

(x
(z
V) IDP, 1) ( ) L = 2n%n,
(2
¥

(iv) [P, P) =

i) 12, 1) nl ) L = 4nn,
ni +n2 ni
ni + ny N1 L = 4)’1%7’12
ni 2n1

i) (P, 1) =

ni+np, -—-ni+npy O
(viii) 121, 1) = 5 —ni+ny, ni+n, O L = n3ny;
ny — np ni1 —np 2nl
ni, ny are of the same parity.

A.7. The cubic crystal system
n 0 O
(i) L(P, F’)=l(F,F)=l(I,I)_<O n 0) L=n°
0 0 n

0 n n
(ii)l(F,P):l(P,I):(n 0 n) L=2n
n n O
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—n n n
(i 10,P=IP,F=|n -n n L =4n®
n n —n
3n -n -n
iV ILFH=|-n 3n -n L =16:°

-n -n 3n

2n n n
wumn=(n 2n n) L = 45,
n n 2n

Appendix B. Matrices Q;

1 00 -1 1 1 0 1 1
0:.=(0 1 0 O,=(1 -1 1 0Oz=(1 0 1
0 0 1 1 1 -1 1 1 0
211 3 -1 -1
Os=11 2 1 Os=(-1 3 -1
11 2 -1 -1 3
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